
NASA-CR-Z03088

NASA/WVU Software IV-& V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-96-02 !

WVU-SRL-96-021

WVU-SCS-TR-96-32

c, o 3_ 7Y7

Modeling the Object-Oriented Space Through Validated
Measures

by Ralph D, Neal

v,, :)

v.

-., --

National Aeronautics and Space Administration

West Virginia University

Modeling the Object-Oriented Space

Through Validated Measures

Ralph D. Neal

West Virginia University

NASA/WVU Software Research Laboratory

100 University Drive

Fairmont, WV 26554

304-367-8355

meal @ research.ivv.nasa.gov

Abstract--In order to truly understand

software and the software development

process, software measurement must be better

understood. A beginning step toward a better

understanding of software measurement is the

categorization of the measurements by some

meaningful taxonomy. The most meaningful

taxonomy would capture the basic nature of

the object-oriented (O-O) space. The

interesting characteristics of object-oriented

software offer a starting point for such a

categorization of measures. A taxonomy has

been developed based upon fourteen

characteristics of object-oriented software

gathered from the literature. This taxonomy

allows us to easily see gaps and redundancies

in the O-O measures. The taxonomy also

clearly differentiates among taxa so that there

is no ambiguity as to the taxon to which a

measure belongs. The taxonomy has been

populated with thirty-two measures that have
been validated in the narrow sense of Fenton

[9] using measurement theory with Zuse's

[30] augmentation.

TABLE OF CONTENTS

1. INTRODUCTION

2. THE OBJECT-ORIENTED SPACE

3. SOFTWARE MEASUREMENT

4. THE IMPORTANCE OF VALIDATION

5. MEASUREMENT THEORY

6. THE MEASURES

7. THE TAXONOMY

8. CONCLUSIONS

1. INTRODUCTION

Software development historically has been

the arena of the artist. Artistically developed

code often resulted in arcane algorithms or

spaghetti code that was unintelligible to those

who had to perform maintenance. Initially

only very primitive measures such as lines of

code (LOC) and development time per stage

of the development life cycle were collected.

Projects often exceeded estimated time and

budget. In the pursuit of greater productivity,

software development evolved into software

engineering. Part of the software engineering

concept is the idea that the product should be

controllable. Control of a process or product

requires that the process or product is

measurable; therefore, control of software

requires software measures [2].

Software and software development are

extremely complex. We should not expect to

measure something so complex with one, two,
or even a dozen measures. Measures have to

be developed to allow us to view software

from many perspectives. Many object-oriented

(O-O) metrics have been proposed in the

literature, e.g., [I], [6], [7], [16], and [17]. To

better understandthe contribution of these

metrics, it is necessary to categorize them so

that we can better understand the dimensions

of 0-0 software. No one has yet organized

these metrics in any way that models the 0-0

space. Until we understand the many

dimensions of 0-0 software, we cannot truly

understand the product. It does no good to

measure the process if the product is not

measured. Being the best at producing an

inferior product does not define a quality

process. To facilitate understanding of the

product, this paper proposes a taxonomy that

not only allows us to classify measures but

also helps us model the object-oriented space.

Definition of Terms and Notation

Complexity,
inter-structural

Complexity,
intra-structural

Complexity,

psychological

Cohesion

Coupling

Entity

Measure(n.)

Measurement

Complexity introduced into
the structure of a class by

the interaction with other

classes.

Complexity introduced into

the structure of a class by

the interaction of methods

within the class.

Non-structural concepts

which make understanding

of the entity being measured

more difficult.

The extent to which a class

is self-contained.

The extent to which a class

utilizes attributes outside

itself.

An object or an event, e.g., a

developed program or the

development process.

A numeric representation
that has been validated to

measure some dimension of

some entity -- in our case,
software.

The process of empirical,

objective assignment of

numbers to the properties of

Measurement

level

Metric

Program

Ratio scale

Ratio' scale

Software

dimension

System

Taxa

Taxon

Taxonomy

objects and events in the

real world in such a way as

to describe them [Zuse,

1991].

Defines the scope of the

measurement by naming the

thing being measured, i.e.,

variable, method, class,

program, or system.

A numeric representation

(not necessarily validated)

that purports to measure
some dimension of

software.

A collection of classes to

perform a specific function,

e.g., a payroll deduction

calculation program.

Represents ratios of a

property, i.e., ratio scales
allow statements such as "a

is twice as complex as b"

(iff (a)=2 (b)); assigned to
measures that fulfill the

extensive structure.

A weak ratio scale; assigned
to measures that fulfill the

concatenation rules of the

set theory union operation.

An interesting characteristic
of the software.

Dimensions are the

characteristics which we are

interested in measuring.

A coordinated collection of

programs to carry out a

specific procedure, e.g., a

payroll system.
Plural of taxon.

A taxonomic category or

unit.

An arrangement of items

(measures) onto natural,

related groups based on
factors common to each.

t_ observed relational system (Empirical

Relational System: A=(A,R1 Rn))

some property of software which we

wish to measure.

R numerical relational system (Formal

Relational System: B=(B,SI Sn).).

signifies is larger than (or is preferred

to).
- signifies is equivalent to (or is

indifferent to).

onto

gt necessarily leads to.

O binary operation in the empirical

relational system, usually designated

concatenation.

2. THE OBJECT-ORIENTED SPACE

Authors have not been in agreement about the

characteristics that identify the object-oriented

approach. Henderson-Sellers [12] listed

information hiding, encapsulation, objects,

classification, classes, abstraction, inheritance,

polymorphism, dynamic binding, persistence,

and composition as having been chosen by at

least one author as a defining aspect of object-

orientation. Rumbaugh, et al. [20] added

identity, Smith [22] added single type and

Sully [23] added the unit building block to this

list of defining aspects. These aspects of

object-orientation are not disjoint. In fact there

is much overlapping of aspects as different

authors grouped sub-aspects differently and

created their own individual groupings, each

with a unique aspect name. It should be

obvious from the preceding list that there are

many dimensions to O-O software. It should

also be noted that this list may not be

exhaustive.

The Tegarden, et al., [24] model of object-

oriented systems complexity measurement

defines object-oriented systems as looking

different from different viewpoints. This

model defines four levels of software strata.

[18] adds a fifth level of strata. Building on

this model, the object-oriented space can be

represented as a matrix that partitions the

space into levels of granularity. The software

levels that a software developer might want to

measure (in order of granularity) are:

variables, methods, classes, programs, and

systems. Each level of granularity exhibits
characteristics that contribute to the character

of that level. Designating the five levels of

granularity as columns and fourteen
dimensions of O-O software that have been

gleaned from the literature as rows, The

Object-Oriented Space matrix (see Table 1 for

axes headings) is proposed. This model forces

a reasonable consensus upon measurers.

Table 1: The Object-Oriented Space

Software

Dimensions

(column headings)

Clarity

Levels of granularity

(row headings)

Variable

Cohesion Method

Coupling Class

Complexity, Program
inter-structural

Complexity, System
intra-structural

Complexity,

psychological

Design

Encapsulation

Inheritance

Information hiding

Polymorphism

Reuse

Size

Specialization

In order to measure object-oriented software

the measurer will need to be aware of the

characteristics of O-O software and of the

different levels of granularity inherent in the

O-O paradigm. This model parses the object-

oriented space into understandable,

unambiguous segments and allows the

measurer to reason about the object-oriented

space in a meaningful way.

3. SOFTWARE MEASUREMENT

Many researchers have asserted the

importance of software measurement.

Vollman [26] wrote of the importance of

software measurement to society while Grady

and Caswell [11] and Chidamber and Kemerer

[7] described its importance to management.

Measurement is the process whereby numbers

or symbols are assigned to dimensions of
entities in such a manner as to describe the

dimension in a meaningful way. An entity

may be a thing or an event, e.g., a person, a

play, a developed program or the development

process. A dimension is a trait of the entity,

such as the height of a person, the cost of a

play, or the length of the development process.

Obviously, the entity and the dimension to be

measured must be specified in advance.

Measurements cannot be taken and then

applied to just any dimensions. Unfortunately

this is exactly what the software development

community has been doing [10], e.g., lines-of-

code, being a valid measurement of size, has

been used to "measure" the complexity of

programs [28].

An intuitive and empirical assessment of the

entities and dimensions must be preserved by

the measurement (the assignment of numbers

and symbols). For example, when measuring

the height of two people the taller person

should be assigned a larger number than the

shorter person. Notice that the unit of

measure, (feet, inches, meters) has no effect

on this rule. Likewise, when measuring

software complexity, the more complex

program should be assigned a larger number

than the less complex program. This is

discussed in depth in the section on

Measurement Theory.

Because people observe things differently

(and often intuitively feel differently about

things), a model is usually defined for the
entities and dimensions to be measured. The

model requires everyone to look at the subject

from the same viewpoint. Fenton [10] uses the

example of human height. Should posture be

taken into consideration when measuring

human height? Should shoes be allowed?

Should the measurement be made to the top.of

the head or the top of the hair? The model

forces a reasonable consensus upon the

measurers. This idea is applied to software

measurement in the section on The Object-

Oriented Space.

There are two types of measurement: direct

measurement of a dimension requires only that

dimension; indirect measurement of a dimension

requires that one or more other dimensions be

measured. Because the dimensions of greatest

interest, e.g., quality and reliability, are often

external to the entity being measured, and

therefore very hard to measure directly,

indirect measurement usually achieves more

useful results [10]; [15]. That is, internal

dimensions e.g., verbal skills, are measured, to

assess external dimensions, e.g., intelligence

quotient (IQ). Or in the case of software, the
number of known defects are counted to

assess quality.

4. THE IMPORTANCE OF VALIDATION

Fenton [10] argued that much of the software

measurement work published to date is

scientifically flawed. This is not a revelation.

Software metrics usually have been taken at

face value. Because many people believe that

any quantification is better than no

quantification at all, just counting the lines of

code (for example) was enough to give

management the feeling of doing something to

try to gain control of the software

development process. After obtaining the

quantification, management had to try to

decide just what was described and how the

development process was influenced. Fenton

[9] stated that it is often the case that the

general lack of validation of software metrics

is the reason that managers do not know what

to do with the numbers with which they are

presented.

Fenton is not the only author who has

observed this lack of scientific precision.

Baker, et al., [2] said as much when they

wrote that research in software metrics often is

suspect because of a lack of theoretical rigor.

Li and Henry [16] argued that validation is

necessary for the effective use of software

metrics. Schneidewind [21] stated that metrics

must be validated to determine whether they

measure what it is they are alleged to measure.

Weyuker [27] stated that existing and

proposed software measures must be subjected

to an explicit and formal analysis to define the

soundness of their properties.

Fenton [9] described two meanings of

validation. Validation in the narrow sense is

the rigorous process of ensuring that the

measure properly represents the intended

dimension of the software, i.e., verify that the

measure is theoretically sound. Validation in

the wide sense is the authentication of a

prediction system using verified measures of

the software. Accurate prediction relies on

careful measurement of the predictive

dimensions. A model which accurately

measures the dimensions is necessary but not

sufficient for building an accurate prediction

system. The model, along with procedures for

determining the parameters to feed the model,

and procedures to elucidate the results all are

necessary to build an accurate prediction

system [9].

In the past, validation in the wide sense has

been conducted without first carrying out

validation in the narrow sense. Validation in

the narrow sense is a necessary step before

measures can be used to predict such

managerial concerns as cost, reliability, and

productivity.

"Very few metrics have been proposed

to measure object oriented systems,

and the proposed ones have not been

validated." [16]

Since Li and Henry's statement, there has

been an explosion of object-oriented software

metrics. The recent flood of object-oriented

software metrics (Chen and Lu [6]; Li and

Henry [16]; Chidamber and Kemerer [7]; and

Lorenz and Kidd [17]) has hit the scene with

limited validation beyond regression analysis
of observed behavior. Chidamber and

Kemerer dedicated a sub-section to

measurement theory within the section

devoted to the research problem. They

explained empirical relation systems, formal

relational systems, mapping from the

empirical system to the relational system, and

the properties of the weak order. However,

they made no reference to measurement theory
in the section on metrics evaluation criteria.

They made no attempt to assign a scale to
their metrics nor to evaluate them vis-a-vis the

representation and uniqueness theorems of

measurement theory.

5. MEASUREMENT THEORY

So we have seen, many metrics have been

used without the benefit of any theoretical

validation. Fenton [9] writes that measures

must be validated in the narrow sense using

measurement theory. Fenton's narrow

validation is required to establish the scale of

the measure in order to know which statistics

can be legitimately applied. Briand, et al. [3]

write that measurement theory, while valid for

the structured paradigm, does not migrate to

the object-oriented paradigm. Zuse [30] writes

that the Dempsttr-Shafer Function of _ief allows
us to substitute set theory for the intensive

structure of measurement theory to validate

measures in the narrow sense of Fenton.

also be preserved by any measurement taken.

This relationship might be represented in the

real number system by (.7Dick + .SHarry >

Tom). Any numbers that resulted from

measuring the height of Tom, Dick, and Harry

would have to satisfy the observation

represented by our formula. Thus the

measurement represents our empirical

findings.

The task of measurement theory is to

categorize and describe the types of
measurement. There are two fundamental

problems in measurement theory; the first is

the representation prorfent The representation

problem is to find sufficient conditions for the
existence of a mapping from an observed

system to a given mathematical system. More

formally, given a particular empirical

relational system E and a numerical relational

system R, find sufficient conditions for the

existence of a mapping from E into R. The

sufficient conditions, referred to as

representation axioms, specify conditions

under which measurement can be performed.

Fenton [9] used human height to explain the

representation problem. Suppose three people

are present. It may be observed that Tom is the
tallest of the three, Dick is the shortest of the

three, and Harry is taller than Dick and shorter

than Tom. Thus the taler than relationship

among the three people has been empirically

established. Any measurement taken of the

height of these three people must result in

numbers or symbols that preserve this

relationship. If it is further observed that Tom
is much ta_r than Dick, then this relationship

must also be preserved by any measurement

taken. That is, the numbers or symbols used to

represent the heights of Tom and Dick must

convey to the observer the fact that Tom is
indeed much taller than Dick. If it is further

observed that Dick towers over Tom when

seated on Harry's shoulders, then another

relationship has been established which must

Another aspect of the representation problem

is pointed out by Weyuker [27]. How unique
is the result of the measurement? A

measurement system must provide results that

enable us to distinguish one class of entity

from another class of entity. If a measurement

groups all entities into only two or three

classes, two entities that are clearly different

may end up in the same class, i.e., it may be

impossible to discriminate between two
entities that should be in different classes.

Using Tom, Dick, and Harry again, it is easy

to see that measuring their height in miles is

less representational than measuring their

height in inches, i.e., measured to the closest

mile, they are all the same height.

The other fundamental problem of

measurement theory is the uniqueness t, rorfent

Uniqueness theorems define the properties and

valid processes of different measurement

systems and tell us what type of scale results

from the measurement system. Additionally,

uniqueness theorems contribute to a theory of

scales. According to this theory of scales, the

scale used dictates the meaningfulness of
statements made about measures based on the

scale. [14; 191

Let us consider two statements: 1) This rock

weighs twice as much as that rock; 2) This
rock is twice as hot as that rock. The first

statement seems to make sense but the second

statement may not. The ratio of weights is the

same regardless of the unit of measurement

while the ratio of temperature depends on the

unit of measurement.Weight is a ratio scale,

therefore, regardless of whether the weights of

the rocks are measured in grams or ounces the

ratio of the two is a constant. Fahrenheit and

Celsius temperatures are interval scales, i.e.,

they exhibit uniform distance between integer

points but have no natural origin. Because
Fahrenheit and Celsius are interval scales, the

ratio of the temperatures of the rocks

measured on the Fahrenheit scale is different

from the ratio when the temperatures are

measured on the Celsius scale. A statement

involving numerical scales is meaningful if

the truth of the statement is maintained v-hen

the scale involved is replaced by another

(admissible) scale.

B_e Empiricd/ Formd Rda_,_t System

A relational system is a way of relating one

entity (or one event) of a set to another entity

(or event) of the same set. In the physical

sciences the relations take the form longer

than, heavier than, of equal volume, etc. In the

social sciences (and thus in software

measurement) the relations take the form is

preferred to, is not preferred to, is at least as

good as.

Definition 1: The ordinal relational

system is an ordered tuple

(A,R1 Rn) where A is a nonempty
set of entities and the Ri, i= 1..... n are

k-ary relations on A. [28]

The Empirical Relational System is E =

(A,R1 Rn) where A is a non-empty set of
dimensions that are to be measured and the Ri

are k-ary empirical relations on A as described

above.

The Formal Relational System is R =

(B,S1 Sn) where B is a non-empty set of

formal entities (for example, the real numbers)

and the Si are k-ary relations on B such as

"equal" or "greater than."

Measurement is a mapping M: A---_B such that

M preserves the relations in A, i.e., let B be the
real numbers, then, if the observed entity a/is

larger than (or preferred to) observed entity a2,

then the formal entity bl must be greater than

formal entity b_ Let _" denote is larger than

(or is preferred to) then M is a valid mapping

from A to B iffa/_' a20 bl> b2.

The relational systems A and B along with the

mapping M are sufficient to measure entities

on the ordinal scale. If it is enough to know

that program module 1 is preferred to program
module 2 based on some measurement, then

no further structure is needed. However,

modules often are combined to create a

composite entity which is different from its

parts. In order to measure composite entities

one must either recalculate the empirical value

of the composite entity or combine the

empirical values of the parts in some

meaningful way.

qf_e T__tertsive Structure

The extensive structure is an expansion of the

ordinal relation system to include binary

processes on the entities of the set. The binary

process in the empirical relational system

usually is designated concatenation, denoted

by @. The usual manifestation of the binary

process in the formal relational system is

addition (+) although multiplication may be

the proper process under some circumstances.

Definition 2: The extensive relational

sy__stem is an ordered tuple

(A,RI,...,Rn, @l,...,@m) where A is a

nonempty set of entities, the Ri,

i=l ,n are k-ary relations on A and

the @j, j=l m are closed binary

operations. [28]

The extensive structure is required to measure

entities on the interval or ratio scales. Let b l,

b2, b3, b4, be theformal measuresassociated
with al, a2, a3, a4. Under the extensive
structure,M is a homomorphismfrom A to B
iff al@a2 _" a3@a4 _ bl+b2 > fi3+b4, i.e., the

observed relationship of the concatenated

entities must be preserved by the mapping to

the formal relationship. Note that addition is

assumed to be the concatenation operator.

Criticism _ dze Extensive Structure

Recent work has questioned the applicability

of the extensive structure to object-oriented

measures [3], [41, [51, [291, and [301.

Particularly important is the question: must

the measurement of an entity formed by the

concatenation of two modules equal the sum

of the measurements of the independent

modules before concatenation, i.e., let bl, b2,

be the formal measures associated with al, a2;

is it necessary that al@ a2 equates to bl+b2?

instance variables) a, b, c and C 2 be a class

with properties a, d, e. Let C 3 = C 1 @ C2, then

the properties of C 3 are a, b, c, d, e. This is the

definition of the un/on operation in set theory.

Object-oriented classes then may be viewed as
sets with the methods and instance variables

of the class being the elements of the set [30].

Concatenation of classes when C 1 and C 2 are

merged should follow the rules of set theory.

Whenever set theory is used, instead of the

extensive structure, to test for a scale above

the level of the ordinal scale [30] we will call

this the ratio' scale. This is a weaker test than

the extensive structure test. The extensive

structure dominates the set theory union

structure. That is, the set theory union

structure always holds if the extensive

structure holds, and the set theory union

structure may hold when the extensive
structure does not.

The result of combining two classes (CI, C2)

is a single class (C 3) which combines all of

the properties of the two initial classes. There

are four ways that C 3 might be formed [13]:

1) C 3 contains C 1 and C 2 and the names of

the properties which appear in both have been

differentiated to avoid ambiguities. In this

instance, the extensive structure holds;

2) C 3 contains both C1 and C 2 but the

instance variables which appear in both are

hidden in one and the methods which appear

in both are overloaded in that same one. All

properties of both classes are present,
therefore, the extensive structure holds;

The question really is: if a measure is ordinal
but fails the extensive structure, is the measure

strictly ordinal or would much valuable data

be lost by not considering the measure as a

higher order scale [25 as cited by 3]?
Parametric statistics have been shown to be

more robust in the face of scale , i.e., more

accurate when the wrong scale has been

assumed, than nonparametric statistics [4].

Therefore, there are two reasons to extend the

scale of a measure to a higher level. The

measure may be more powerful than the

ordinal scale will reflect and the parametric

statistics that we wish to use to take advantage

of this power are forgiving of

miscategorization of scale.

3) C 3 contains C 1 and C 2 as subobjects and

does not present their properties to the outside

world. Again, all properties are present, and

yet again, the extensive structure holds;

4) C 3 is created by merging. Let C 1 be a

class with the properties (methods and

6. THE MEASURES

The measures taken from [6], [7], [16], [171,

and [18] have been validated to be ratio (or

ratio') scales. The metrics from Tegarden, et

al., have been taken from their paper without

validation. They have been included to show

that work is being done at the variable and
methodlevels.

This is in no wayall of the metricsofferedby
Tegarden, et al. None of their proposed
metricshavebeenincludedfor cells for which
validatedmeasuresalreadyexist. Also, some
of theirmetricsweremerelyobservations,e.g.,
"The complexitymeasuredby the fan-in and
fan-out measures increase intervariable
complexity and the variable polymorphism
measuredecreasesintervariablecomplexity."
This approach does not convey enough
informationto allow us to placethevariables
in order by complexity, i.e., this approach
doesnot leadto anordinal scale.

Validated Measures

(AIM) Average number of instance methods

per class [17]

(AIV) Average number of instance variables

[171

(AMS) Average method size [17]

(CRE) Number of times a class is reused [17]

(CLM) Average number of comment lines per

method [17]

(DAC) Density of abstract classes [18]

(DCBO) Degree of coupling between classes

[181

(DCWO) Degree of coupling within classes

[181
(DMC) Density of methodological

cohesiveness [18]

(FFU) Use of friend functions [17]

(FOC) Percentage of function-oriented code

[17]

(IMC) Intraclass method calls [18]

(LOC) Lines of code [17]: Number of

statements (NOS) [17]: Number of

semicolons in a class (SIZE1) [16]

(MAA) Messages and arguments [18]

(MPC) Message-passing coupling [16]

(NAC) Number of abstract classes [17]

(NCM) Number of class methods in a class

[17]

(NIM) Number of instance methods in a class

[17]

(NIV) Number of instance variables in a class

[17]

(NMA) Number of methods added by a

subclass [17]

(NOM) Number of local methods [16]

(PIM) Number of public instance methods in a

class [17]

(PMI) Potential methods inherited [18]

(PMIS) Proportion of methods inherited by a

subclass [18]

(POM) Proportion of overriding methods in a

subclass [18]

(PRC) Number of problem reports per class or

contract [17]

(PRIM) Number of private instance methods

[18]

(RFC) Response for a class [7]

(RUS) Reuse [6]

(SML) Strings of message-links [18]

(UCGLD Unnecessary coupling through global

usage [18]

(WMC) Weighted methods per class [7]

Metrics Not yet Validated

(I/Ov) Invoked object variables [24]

(mfd) Method fan down [24]

(raft) Method fan in [24]

(mfo) Method fan out [24]

(mp) Method polymorphism [24]

(vfd) Variable fan down [24]

(vfi) Variable fan in [24]

(vfo) Variable fan out [24]

(vp) Variable polymorphism [24]

7. THE TAXONOMY

As has been stated, a beginning step toward

understanding software measurement is the

categorization of the measurements by some

meaningful taxonomy. Archer and Stinson [1]

propose a taxonomy that places a metric in

one (or more) of five taxa, viz., system,

coupling and uses, inheritance, class, and

method. It is unclear where a measure of say

couplingamongmethods,asin [24],would be
classifiedin this taxonomy.Thecoarsenessof
this taxonomyalsocausesmetricsfor different
softwareartifactsto begroupedtogether,e.g.,
if all coupling metrics are classified as
"couplingand uses"metrics,thenmeasuresof
classes would be lumped together with
measures of methods and measures of
variables,againasin [24]. A usefultaxonomy
clearlyshoulddifferentiateamongtaxasothat
thereis no ambiguityasto the taxonto which
a measurebelongs.If weareto learnaboutthe
object-orientedspace,it must bepossible for
diversified measurersto reach the same
conclusionsgiventhesamedata.A taxonomy
shouldat leastalloweachmeasurerthe ability
to startreasoningfrom thesamesensibility.

The Object-OrientedSpacematrix offers a

starting point for such a categorization of

measures. By filling in the cells of the Object-

Oriented Space matrix with the measures from

section 6, the matrix becomes the Object-

Oriented Measures Taxonomy (see Table 2).

This taxonomy includes all of the known,

interesting characteristics of software and

clearly defines where any measure fits among

the taxa without worry of overlap or

ambiguity. If a measure cannot be placed

easily into one and only one taxon, the

measure may not be well understood. A

measure that is not well understood is useless

and costly to the measurer and should be

discarded. If a measure cannot be placed

easily into any existing taxon, the taxonomy

may be incomplete. An incomplete taxonomy
calls for more research.

The thirty-two metrics with which the table

has been populated have been validated in the

narrow sense of Fenton [9] using measurement

theory with Zuse's [30] augmentation [18].

Fifty measures found in the literature ([6], [71,

[16], and [17]) were subjected to validation

via measurement theory. Twenty of these

measures were found to be valid in the narrow

sense of Fenton [9]. Every measure that

passed validation in the narrow sense fit

unambiguously into this taxonomy. Twelve
new measures have been validated and added

to these [18]. An attempt was made to fill in

those cells that lacked validated measures. The

attempt was successful in filling in fifteen
cells for which validated measures did not

previously exist. Additional measures were

added to five cells that may have previously

had incomplete measurement.

8. CONCLUSIONS

Often there are many metrics which attempt to
measure the same dimension of the same

level. The collection of measurement data is

very expensive [8]. However, the collection of

multiple measures to measure the same
dimension of the same level of software can

be useful. The collection of multiple measures

allows them to be compared to each other to

either confirm that they do indeed measure the

same dimension or establish that one (or

more) of them is measuring something other

than the dimension in question. Once it is
established which measure most cost

effectively measures the dimension in

question, it may not be necessary to collect the
other measures. If the measures in one cell are

not all measuring the same dimension, then

one or more of the measures may have been

miscataloged. It is left to the measurer to
determine which measures to use.

Though many of the fourteen dimensions

appear multiple times in the literature, they

may not be the dimensions that matter. There

may be other dimensions that do not yet have

metrics designed to measure them but which
must be measured in order to understand an

object-oriented artifact. Certainly all fourteen
dimensions will not matter for all levels. Once

cells are identified as being irrelevant they

should be Xed out or otherwise marked as

such. The same dimension measured on

different levels will almost certainly require

different measures or at least a different scope,

e.g., lines-of-code (LOC) in a program vs.

LOC in a system.

Some measures may be scaleable to levels

other than that level for which they were

Table 2: Object-Oriented
Level _ Variable

Dimension 0

Clarity

Cohesion

Coupling (1-(1/(vfi+vfo+w)))

Complexity,
inter-structural

Complexity,
intra-structural

Complexity,
psychological

Design

Encapsulation

Inheritance

designed. Measures that are scaleable are not

directly applicable as defined but may lend

themselves to being averaged or summed to

fill a cell at a higher level. No measures have
been found to be scaleable to cells at a lower

level.

Meas_

Method

Cr, Cmfi+mSo)I
Onfi+,,,lo))

C,- , t,4mfi+mSo)I
tot,e C,,,fi+m/o))
remote mfi
remotemfo
remote l/Ov

SML

k,ca[I/Ov

MAA
I/Ov

System
Taxonomy

Class Program

CLM CLM

DMC DMC
DCWO DCWO

UCGU UCGU

DCBO DCBO

NIM AIM

PIM PIM_

RFC RFQ

IMC IMQ

MPC MP_

WMC WMC
PRC PRC
NOM FOC

FFU FFU

PMI DAC

PMIS NAC

PrIM PrIM

RUS RUS
CRE CRE

LOC LOC

AMS AMS
NIV AIV

POM POM
NCM NCM

NMA NMA

CLM

DMC
DCWO

UCGU

DCBO

AIM
PIM

RFC

IM_

MPC
WMC
PRC
FOC

FFU

DAC

NAC

Information hiding PrIM

Polymorphism W mp

Reuse vfi-1 raft-1 RUS
CRE

Size LOC LOC
AMS AMS

AIV

Specialization POM
NCM
NMA

deasures from [181

Measures from [6], [7], [16], and [171

Ma, pomfZ41
Mea_¢res that can b¢ scaled up to a higher level or derived from scales at a lower level

Future research

The taxonomy needs to be tested empirically.

If meaningful measures cannot be defined for

a cell, e.g., encapsulation of a variable, then

the cell should be expunged. Likewise, if

useful outside variables (performance,

schedule, or cost) cannot be defined against

which to test the measures of a cell then the

cell should be expunged. If all levels of a

dimension have been expunged, the entire row

(dimension) should be removed from the

taxonomy matrix. If, for whatever reason, a

new dimension becomes apparent, a new row

should be added to the taxonomy matrix. The

new dimension should then be populated with

validated measures. The measures as well as

the new dimension should be subjected to the

same rigorous testing, at all levels, as has

previously been defined for already existing

measures of already existing dimensions.

These steps need to take place iteratively until

software products and processes are more

clearly defined and understood.

REFERENCES

[1] Archer, Clark, and Michael Stinson, "Object-
Oriented Software Measures", Technical Report

CMU/SEI-95-TR-O02, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA, 1995.

[2] Baker, Albert L., James M. Bieman, Norman
Fenton, Davis A. Gustafson, Austin Melton, and Robin

Whitty, "A Philosophy of Software Measurement", The
Journal of Systems and Software, Vol. 12, 1990, p.
277-281.

13] Briand, Lionel C., Khaled El Eman, and
Sandro Morasca, "Theoretical and Empirical Validation
of Software Product Measures", International Software

Engineering Research Network technical report
#1SERN-95-03, 1995a.

[4] Briand, Lionel C., Khaled El Eman, and
Sandro Morasca, "On the Application of Measurement

Theory in Software Engineering", International

Software Engineering Research Network technical

report #ISERN-95-04, 1995b.

[5] Briand, Lionel C., Sandro Morasca, and Victor

R. Basili, "Property-Based Software Engineering
Measurement", IEEE Transactions on Software

Engineering, Voi. 22, No. 1, 1996.

[6] Chen, J-Y, and J-F Lu, "A New Metric for

Object-Oriented Design", Information and Software

Technology, p.232-240, 1993.

[7] Chidamber, Shyam R., and Chris F. Kemerer,
"A Metric Suite for Object Oriented Design", IEEE

Transactions on Software Engineering, Vol. 20, No. 6,
June 1994.

[8] Deutsch, Michael S., and Ronald R. Willis,

Software Quality Engineering: A Total Technical and

Management Approach, Prentice-Hall, Englewood
Cliffs, NJ, 1988.

[9] Fenton, Norman, Software Metrics: A

Rigorous Approach, Chapman & Hall, London, UK,
1991.

[10]Fenton, Norman, "Software Measurement: A

Necessary Scientific Basis", IEEE Transactions on
Software Engineering, Vol. 20, No. 3, March 1994.

[ll]Grady, Robert B., and Deborah L. Caswell,

Software Metrics: Establishing A Company-Wide
Program, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1987.

[! 2] Henderson-Sellers, B., A Book of Object-Oriented

Knowledge, Prentice Hall, NY, 1992.

[13] Hitz, Martin, and Behzad Montazeri, "Chidamber
and Kemerer's Metric Suite: A Measurement Theory

Perspective", IEEE Transactions on Software

Engineering, Vol. 22, No. 4, April 1996.

[14]Hong, Sa Neung, Michael V. Mannino, and Betsy
Greenberg, "Measurement Theoretic Representation of

Large, Diverse Model Bases", Decision Support

Systems, 10, 1993.

[15]Kyburg, Henry E., Jr., Theory and Measurement,

Cambridge University Press, Cambridge, UK, 1984.

[16]Li, Wei, and Sallie Henry, ''Object-Oriented

Metrics that Predict Maintainability", Journal of

Systems and Software, Vol 23, p.! 1 !-122, 1993.

[17]Lorenz, Mark, and Jeff Kidd, Object-Oriented

Software Metrics, Prentice Hall, Englewood Cliffs, NJ,
1994.

[18]Neal, R.D., The Validation of Proposed Object-

Oriented Software Metrics By Measurement Theory,

Virginia Commonwealth University, Dissertation.

[19]Roberts, Fred S., Measurement Theory with

Applications to Decisionmaking, Utility, and the Social
Sciences, Addison-Wesley Publishing Company,

Reading Massachusetts, 1979.

[20]Rumbaugh, James, Michael Blaha, William
Premerlani, Frederick Eddy, and William Lorensen,

Object-Oriented Modeling and Design, Prentice Hall,

Englewood Cliffs, NJ, 1991.

[28]Zuse, Horst, Software Complexity: Measures and
Methods, Walter de Gruyter, Berlin, 1990.

[29] Zuse, Horst, "Foundations of Validation,

Prediction, and Software Measures", Annual Oregon

Workshop on Software Metrics, April 20-22, 1994.

[30]Zuse, Horst, "Foundations of Object-Oriented
Software Measures", Proceedings of the Third

International Software, Metrics Symposium, March
1996.

[21]Schneidewind, Norman F., "Methodology for

Validating Software Metrics", IEEE Transactions on

Software Engineering, Voi. 18, No. 5, May 1992a.

[22]Smith, David N., Concepts of Object-Oriented

Programming, McGraw-Hill, NY, 1991.

[23]Sully, Phil, Modeling the Worm with Objects,
Prentice Hall, NY, 1993.

[24]Tegarden, David P., Steven D. Sheetz, and David
E. Monarchi, "A Software Complexity Model of

Object-Oriented Systems", Decision Support Systems

13, p. 241-62, 1995.

[25]Tukey, John, "Data Analysis and Behavioral
Science or Learning to Bear the Quantitative Man's

Burden by Shunning Badmandments", The Collected

Works of John W. Tukey, Vol.HI,Wadsworth, 1986.

[26] Vollman, Thomas E., "Software Quality
Assessment and Standards", Computer, June 1993.

[27]Weyuker, Elaine J., "Evaluating Software

Complexity Measures", 1EEE Transactions on Software

Engineering, Vol. 14, No. 9, September 1988.

Ralph D. (Butch) Neal is a research associate

at the National Aeronautics and Space

Administration (NASA)/ West Virginia

University (WVU)

Independent Verification

and Validation (IV&V)

Facility in Fairmont West

Virginia. Butch has over 30

years experience in data

processing mostly from a

business perspective. He

was president of Augusta Computer Systems (

a small software development company)

before returning to school. He has a BA and

an MBA from WVU and a Ph.D. from Virginia

Commonwealth University. Research

interests include software measurement (s/m)

for reuse, s/m for quality control, and s/m of

rapid software development processes.

